Reference
Public API
The following functions are exported by the JefimenkoModels
package.
JefimenkoModels.E
— FunctionH(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))
Calculate the predicted electric field 𝐇 observed at space-time point (r̄
,t
) using the electric Jefimenko equation for a particular model
. Calculate the integral using a specified relative tolerance
.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate
: spatial location of the observation pointt::Unitful.Time
: time at which the electric field is observedmodel::JefimenkoModel
: model of the transmitting source and propagation media
Keywords
rtol::Real
: relative tolerance at which to solve the integral (optional)
JefimenkoModels.H
— FunctionH(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))
Calculate the predicted magnetic field 𝐇 observed at space-time point (r̄
,t
) using the magnetic Jefimenko equation for a particular model
. Calculate the integral using a specified relative tolerance
.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate
: spatial location of the observation pointt::Unitful.Time
: time at which the field is observedmodel::JefimenkoModel
: model of the transmitting source and propagation media
Keywords
rtol::Real
: relative tolerance at which to solve the integral (optional)
JefimenkoModels.P
— FunctionP(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))
Calculate the predicted Poynting vector 𝐏 observed at space-time point (r̄
,t
) using the electric and magnetic Jefimenko equations for a particular model
. Calculate the integrals using a specified relative tolerance
.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate
: spatial location of the observation pointt::Unitful.Time
: time at which the field is observedmodel::JefimenkoModel
: model of the transmitting source and propagation media
Keywords
rtol::Real
: relative tolerance at which to solve the integral (optional)
Internal API
JefimenkoModels.__E
— Function__E(r̄::AbstractCoordinate, t::Time, source::AbstractJefimenkoSource,
media::PropagationMedia; rtol=sqrt(eps))
Calculate the electric field at (r̄
,t
) using the electric Jefimenko equation due to a particular source
, transmitted through a particular homogeneous propagation media
. Calculate the integral using a specified relative tolerance
.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate
: spatial location of the observation pointt::Unitful.Time
: time at which the electric field is observedsource::AbstractJefimenkoSource{T}
: source of the electric fieldmedia::PropagationMedia
: properties of the propagation media
Keywords
rtol::Real
: relative tolerance at which to solve the integral (optional)
JefimenkoModels.__integrand_E
— Function__integrand_E(r̄′::CoordinateCartesian; r̄::CoordinateCartesian, t::Time,
source::AbstractJefimenkoSource{T}, media::PropagationMedia)::SVector{3,T}
where {T<:AbstractFloat}
Calculate the integrand function for the electric Jefimenko equation at the source point r̄′
. Parameterize the integrand function according to a particular field source
, propagation media
, and for an observer positioned at space-time point (r̄
,t
).
Arguments
r̄′::UnitfulCoordinateSystems.CoordinateCartesian
: coordinate of the source point
Parameters
r̄::UnitfulCoordinateSystems.CoordinateCartesian
: coordinate of the observation pointt::Unitful.Time
: time at the observation pointsource::JefimenkoSource
: the source model generating the electric fieldmedia::PropagationMedia_Simple
: properties of the propagation media
Returns
SVector{3,T}
: the predicted vector-valued integrand value
JefimenkoModels.__H
— Function__H(r̄::AbstractCoordinate, t::Time, source::JefimenkoSource, media::PropagationMedia; rtol)
Calculate the magnetic field at (r̄
,t
) using the electric Jefimenko equation due to a particular source
, transmitted through a particular homogeneous propagation media
. Calculate the integral using a specified relative tolerance
.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate
: spatial location of the observation pointt::Unitful.Time
: time at which the magnetic field is observedsource::JefimenkoSource
: source of the magnetic fieldmedia::PropagationMedia
: properties of the propagation media
Keywords
rtol::Real
: relative tolerance at which to solve the integral (optional)
JefimenkoModels.__integrand_H
— Function__integrand_H(r̄′::CoordinateCartesian; r̄::CoordinateCartesian, t::Time,
source::AbstractJefimenkoSource{T}, media::PropagationMedia)::SVector{3,T}
where {T<:AbstractFloat}
Calculate the integrand function for the magnetic Jefimenko equation at the source point r̄′
. Parameterize the integrand function according to a particular field source
, propagation media
, and for an observer positioned at space-time point (r̄
,t
).
Arguments
r̄′::UnitfulCoordinateSystems.CoordinateCartesian
: coordinate of the source point
Parameters
r̄::UnitfulCoordinateSystems.CoordinateCartesian
: coordinate of the observation pointt::Unitful.Time
: time at the observation pointsource::JefimenkoSource
: the source model generating the magnetic fieldmedia::PropagationMedia_Simple
: properties of the propagation media
Returns
SVector{3,T}
: the predicted vector-valued integrand value
JefimenkoModels.__P
— Function__P(r̄::AbstractCoordinate, t::Time, source::JefimenkoSource, media::PropagationMedia; rtol)
Calculate the predicted Poynting vector 𝐏 observed at space-time point (r̄
,t
) due to a particular source
, transmitted through a particular propagation media
. Calculate the integral using a specified relative tolerance
.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate
: spatial location of the observation pointt::Unitful.Time
: time at which the electric field is observedsource::JefimenkoSource
: source of the electric fieldmedia::PropagationMedia
: properties of the propagation media
Keywords
rtol::Real
: relative tolerance at which to solve the integral (optional)