Reference
Public API
The following functions are exported by the JefimenkoModels package.
JefimenkoModels.E — FunctionH(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))Calculate the predicted electric field 𝐇 observed at space-time point (r̄,t) using the electric Jefimenko equation for a particular model. Calculate the integral using a specified relative tolerance.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation pointt::Unitful.Time: time at which the electric field is observedmodel::JefimenkoModel: model of the transmitting source and propagation media
Keywords
rtol::Real: relative tolerance at which to solve the integral (optional)
JefimenkoModels.H — FunctionH(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))Calculate the predicted magnetic field 𝐇 observed at space-time point (r̄,t) using the magnetic Jefimenko equation for a particular model. Calculate the integral using a specified relative tolerance.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation pointt::Unitful.Time: time at which the field is observedmodel::JefimenkoModel: model of the transmitting source and propagation media
Keywords
rtol::Real: relative tolerance at which to solve the integral (optional)
JefimenkoModels.P — FunctionP(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))Calculate the predicted Poynting vector 𝐏 observed at space-time point (r̄,t) using the electric and magnetic Jefimenko equations for a particular model. Calculate the integrals using a specified relative tolerance.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation pointt::Unitful.Time: time at which the field is observedmodel::JefimenkoModel: model of the transmitting source and propagation media
Keywords
rtol::Real: relative tolerance at which to solve the integral (optional)
Internal API
JefimenkoModels.__E — Function__E(r̄::AbstractCoordinate, t::Time, source::AbstractJefimenkoSource,
media::PropagationMedia; rtol=sqrt(eps))Calculate the electric field at (r̄,t) using the electric Jefimenko equation due to a particular source, transmitted through a particular homogeneous propagation media. Calculate the integral using a specified relative tolerance.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation pointt::Unitful.Time: time at which the electric field is observedsource::AbstractJefimenkoSource{T}: source of the electric fieldmedia::PropagationMedia: properties of the propagation media
Keywords
rtol::Real: relative tolerance at which to solve the integral (optional)
JefimenkoModels.__integrand_E — Function__integrand_E(r̄′::CoordinateCartesian; r̄::CoordinateCartesian, t::Time,
source::AbstractJefimenkoSource{T}, media::PropagationMedia)::SVector{3,T}
where {T<:AbstractFloat}Calculate the integrand function for the electric Jefimenko equation at the source point r̄′. Parameterize the integrand function according to a particular field source, propagation media, and for an observer positioned at space-time point (r̄,t).
Arguments
r̄′::UnitfulCoordinateSystems.CoordinateCartesian: coordinate of the source point
Parameters
r̄::UnitfulCoordinateSystems.CoordinateCartesian: coordinate of the observation pointt::Unitful.Time: time at the observation pointsource::JefimenkoSource: the source model generating the electric fieldmedia::PropagationMedia_Simple: properties of the propagation media
Returns
SVector{3,T}: the predicted vector-valued integrand value
JefimenkoModels.__H — Function__H(r̄::AbstractCoordinate, t::Time, source::JefimenkoSource, media::PropagationMedia; rtol)Calculate the magnetic field at (r̄,t) using the electric Jefimenko equation due to a particular source, transmitted through a particular homogeneous propagation media. Calculate the integral using a specified relative tolerance.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation pointt::Unitful.Time: time at which the magnetic field is observedsource::JefimenkoSource: source of the magnetic fieldmedia::PropagationMedia: properties of the propagation media
Keywords
rtol::Real: relative tolerance at which to solve the integral (optional)
JefimenkoModels.__integrand_H — Function__integrand_H(r̄′::CoordinateCartesian; r̄::CoordinateCartesian, t::Time,
source::AbstractJefimenkoSource{T}, media::PropagationMedia)::SVector{3,T}
where {T<:AbstractFloat}Calculate the integrand function for the magnetic Jefimenko equation at the source point r̄′. Parameterize the integrand function according to a particular field source, propagation media, and for an observer positioned at space-time point (r̄,t).
Arguments
r̄′::UnitfulCoordinateSystems.CoordinateCartesian: coordinate of the source point
Parameters
r̄::UnitfulCoordinateSystems.CoordinateCartesian: coordinate of the observation pointt::Unitful.Time: time at the observation pointsource::JefimenkoSource: the source model generating the magnetic fieldmedia::PropagationMedia_Simple: properties of the propagation media
Returns
SVector{3,T}: the predicted vector-valued integrand value
JefimenkoModels.__P — Function__P(r̄::AbstractCoordinate, t::Time, source::JefimenkoSource, media::PropagationMedia; rtol)Calculate the predicted Poynting vector 𝐏 observed at space-time point (r̄,t) due to a particular source, transmitted through a particular propagation media. Calculate the integral using a specified relative tolerance.
Arguments
r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation pointt::Unitful.Time: time at which the electric field is observedsource::JefimenkoSource: source of the electric fieldmedia::PropagationMedia: properties of the propagation media
Keywords
rtol::Real: relative tolerance at which to solve the integral (optional)