Reference

Public API

The following functions are exported by the JefimenkoModels package.

JefimenkoModels.EFunction
H(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))

Calculate the predicted electric field 𝐇 observed at space-time point (,t) using the electric Jefimenko equation for a particular model. Calculate the integral using a specified relative tolerance.

Arguments

  • r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation point
  • t::Unitful.Time: time at which the electric field is observed
  • model::JefimenkoModel: model of the transmitting source and propagation media

Keywords

  • rtol::Real: relative tolerance at which to solve the integral (optional)
source
JefimenkoModels.HFunction
H(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))

Calculate the predicted magnetic field 𝐇 observed at space-time point (,t) using the magnetic Jefimenko equation for a particular model. Calculate the integral using a specified relative tolerance.

Arguments

  • r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation point
  • t::Unitful.Time: time at which the field is observed
  • model::JefimenkoModel: model of the transmitting source and propagation media

Keywords

  • rtol::Real: relative tolerance at which to solve the integral (optional)
source
JefimenkoModels.PFunction
P(r̄::AbstractCoordinate, t::Time, model::JefimenkoModel; rtol=sqrt(eps))

Calculate the predicted Poynting vector 𝐏 observed at space-time point (,t) using the electric and magnetic Jefimenko equations for a particular model. Calculate the integrals using a specified relative tolerance.

Arguments

  • r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation point
  • t::Unitful.Time: time at which the field is observed
  • model::JefimenkoModel: model of the transmitting source and propagation media

Keywords

  • rtol::Real: relative tolerance at which to solve the integral (optional)
source

Internal API

JefimenkoModels.__EFunction
__E(r̄::AbstractCoordinate, t::Time, source::AbstractJefimenkoSource,
    media::PropagationMedia; rtol=sqrt(eps))

Calculate the electric field at (,t) using the electric Jefimenko equation due to a particular source, transmitted through a particular homogeneous propagation media. Calculate the integral using a specified relative tolerance.

Arguments

  • r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation point
  • t::Unitful.Time: time at which the electric field is observed
  • source::AbstractJefimenkoSource{T}: source of the electric field
  • media::PropagationMedia: properties of the propagation media

Keywords

  • rtol::Real: relative tolerance at which to solve the integral (optional)
source
JefimenkoModels.__integrand_EFunction
__integrand_E(r̄′::CoordinateCartesian; r̄::CoordinateCartesian, t::Time,
              source::AbstractJefimenkoSource{T}, media::PropagationMedia)::SVector{3,T}
                    where {T<:AbstractFloat}

Calculate the integrand function for the electric Jefimenko equation at the source point r̄′. Parameterize the integrand function according to a particular field source, propagation media, and for an observer positioned at space-time point (,t).

Arguments

  • r̄′::UnitfulCoordinateSystems.CoordinateCartesian: coordinate of the source point

Parameters

  • r̄::UnitfulCoordinateSystems.CoordinateCartesian: coordinate of the observation point
  • t::Unitful.Time: time at the observation point
  • source::JefimenkoSource: the source model generating the electric field
  • media::PropagationMedia_Simple: properties of the propagation media

Returns

  • SVector{3,T}: the predicted vector-valued integrand value
source
JefimenkoModels.__HFunction
__H(r̄::AbstractCoordinate, t::Time, source::JefimenkoSource, media::PropagationMedia; rtol)

Calculate the magnetic field at (,t) using the electric Jefimenko equation due to a particular source, transmitted through a particular homogeneous propagation media. Calculate the integral using a specified relative tolerance.

Arguments

  • r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation point
  • t::Unitful.Time: time at which the magnetic field is observed
  • source::JefimenkoSource: source of the magnetic field
  • media::PropagationMedia: properties of the propagation media

Keywords

  • rtol::Real: relative tolerance at which to solve the integral (optional)
source
JefimenkoModels.__integrand_HFunction
__integrand_H(r̄′::CoordinateCartesian; r̄::CoordinateCartesian, t::Time,
              source::AbstractJefimenkoSource{T}, media::PropagationMedia)::SVector{3,T}
                    where {T<:AbstractFloat}

Calculate the integrand function for the magnetic Jefimenko equation at the source point r̄′. Parameterize the integrand function according to a particular field source, propagation media, and for an observer positioned at space-time point (,t).

Arguments

  • r̄′::UnitfulCoordinateSystems.CoordinateCartesian: coordinate of the source point

Parameters

  • r̄::UnitfulCoordinateSystems.CoordinateCartesian: coordinate of the observation point
  • t::Unitful.Time: time at the observation point
  • source::JefimenkoSource: the source model generating the magnetic field
  • media::PropagationMedia_Simple: properties of the propagation media

Returns

  • SVector{3,T}: the predicted vector-valued integrand value
source
JefimenkoModels.__PFunction
__P(r̄::AbstractCoordinate, t::Time, source::JefimenkoSource, media::PropagationMedia; rtol)

Calculate the predicted Poynting vector 𝐏 observed at space-time point (,t) due to a particular source, transmitted through a particular propagation media. Calculate the integral using a specified relative tolerance.

Arguments

  • r̄::UnitfulCoordinateSystems.AbstractCoordinate: spatial location of the observation point
  • t::Unitful.Time: time at which the electric field is observed
  • source::JefimenkoSource: source of the electric field
  • media::PropagationMedia: properties of the propagation media

Keywords

  • rtol::Real: relative tolerance at which to solve the integral (optional)
source